什么样的量子引力理论才能满足全息原理呢?因为必须得放弃定域性,建立这样的理论是一个很困难的任务。一个重要的突破是1997年Juan Maldacena提出的AdS/CFT对偶[8],又名全息对偶。AdS代表反德西特空间(Anti de Sitter space),也就是负曲率空间的引力理论,而CFT代表共形场论(conformal field theory)。在物理学中,“对偶”的意思是有两个看起来不一样的物理理论,但它们的性质却是一一对应的。这就好像两种语言中的两句话,听起来完全不同,但是按照词典翻译一下发现其实是同样的意思。
祁晓亮2007年博士毕业于清华大学高等研究院,2007-2009年在斯坦福大学做博士后研究,2009年起起任教于斯坦福大学。主要研究领域为拓扑物质态,量子纠缠和量子引力。曾获得新视野物理奖(New Horizons in Physics),斯洛恩奖(Sloan Fellowship)等奖项。
参考资料
[1] Bekenstein, J. D. Black holes and the second law. Lett. Nuovo Cim. 4, 737–740 (1972).
[2] Bekenstein, J. D. Black holes and entropy. Phys. Rev. D 7, 2333–2346 (1973).
[3] Hawking, S. W. Gravitational radiation from colliding black holes. Phys. Rev.
Lett. 26, 1344–1346 (1971).
[4] Hawking, S. W. Black hole explosions? Nature 248, 30–31 (1974).
[5] Susskind, L. The world as a hologram. J. Math. Phys. 36, 6377–6396 (1995).
[6] Bousso, R. The holographic principle. Rev. Mod. Phys. 74, 825–874 (2002).
[7] ’t Hoot, G. Dimensional reduction in quantum gravity. Preprint at (1993).
[8] Maldacena, J. The large-N limit of superconformal Field theories and supergravity. Int. J. Theor. Phys. 38, 1113 (1999).
[9] Witten, E. Anti de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998).
[10] Gubser, S. S., Klebanov, I. R. & Polyakov, A. M. Gauge theory correlators from non-critical string theory. Phys. Lett. B 428, 105–114 (1998).
[11] Ryu, S. & Takayanagi, T. Holographic derivation of entanglement entropy from the anti–de Sitter space/conformal field theory correspondence.
Phys. Rev. Lett. 96, 181602 (2006).
[12] Hubeny, V. E., Rangamani, M. & Takayanagi, T. A covariant holographic entanglement entropy proposal. J. High Energy Phys. 2007, 062 (2007).
[13] Faulkner, T., Lewkowycz, A. & Maldacena, J. Quantum corrections to holographic entanglement entropy. J. High Energy Phys. 2013, 074 (2013).
[14] Van Raamsdonk, M. Building up spacetime with quantum entanglement.
Gen. Relativ. Gravit. 42, 2323–2329 (2010).
[15] Maldacena, J. & Susskind, L. Cool horizons for entangled black holes.
Fortschr. Phys. 61, 781–811 (2013).
[16] Hayden, P., Headrick, M. & Maloney, A. Holographic mutual information is monogamous. Phys. Rev. D 87, 046003 (2013).
[17] Almheiri, A., Dong, X. & Harlow, D. Bulk locality and quantum error correction in AdS/CFT. J. High Energy Phys. 2015, 163 (2015).
[18] Hubeny, V. E. & Rangamani, M. Causal holographic information.
J. High Energy Phys. 2012, 114 (2012).
[19] Headrick, M., Hubeny, V. E., Lawrence, A. & Rangamani, M. Causality & holographic entanglement entropy. J. High Energy Phys. 2014, 162 (2014).
[20] Harlow, D. The Ryu–Takayanagi formula from quantum error correction.
Commun. Math. Phys. 354, 865–912 (2017).
[21] Swingle, B. Entanglement renormalization and holography. Phys. Rev. D 86, 065007 (2012).
[22] White, S. R. Density matrix formulation for quantum renormalization groups.
Phys. Rev. Lett. 69, 2863–2866 (1992).
[23] Verstraete, F., Murg, V. & Cirac, J. I. Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Adv. Phys. 57, 143–224 (2008).
[24] Vidal, G. Class of quantum many-body states that can be efficiently simulated. Phys. Rev. Lett. 101, 110501 (2008).
[25] DiVincenzo, D. P. et al. in Quantum Computing and Quantum
Communications (ed. Williams, C. P.) 247–257 (Springer, Berlin, 1999).
[26] Pastawski, F., Yoshida, B., Harlow, D. & Preskill, J. Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence.
J. High Energy Phys. 2015, 149 (2015).
[27] Yang, Z., Hayden, P. & Qi, X.-L. Bidirectional holographic codes and sub-AdS locality. J. High Energy Phys. 2016, 175 (2016).
[28] Hayden, P. et al. Holographic duality from random tensor networks.
J. High Energy Phys. 2016, 9 (2016).
[29] Page, D. N. Average entropy of a subsystem. Phys. Rev. Lett. 71, 1291–1294 (1993).
[30] Strominger, A. The dS/CFT correspondence. J. High Energy Phys. 2001, 034 (2001).
[31] Nomura, Y., Salzetta, N., Sanches, F. & Weinberg, S. J. Toward a holographic theory for general spacetimes. Phys. Rev. D 95, 086002 (2017).
[32] Verlinde, E. Emergent gravity and the dark universe. SciPost Phys. 2, 016 (2017).
[33] Han, M. & Huang, S. Discrete gravity on random tensor network and holographic Rényi entropy. J. High Energy Phys. 2017, 148 (2017).
[34] Lashkari, N., McDermott, M. B. & Van Raamsdonk, M. Gravitational dynamics from entanglement “thermodynamics”. J. High Energy Phys. 2014, 195 (2014).
[35] Swingle, B. & Van Raamsdonk, M. Universality of gravity from entanglement. Preprint at (2014).
[36] Shenker, S. H. & Stanford, D. Black holes and the butterfly effect.
J. High Energy Phys. 2014, 67 (2014).
[37] Larkin, A. & Ovchinnikov, Y. N. Quasiclassical method in the theory of superconductivity. J. Exp. Theor. Phys. 28, 1200–1205 (1969).
[38] Shenker, S. H. & Stanford, D. Stringy effects in scrambling. J. High Energy
Phys. 2015, 132 (2015).
[39] Maldacena, J., Shenker, S. H. & Stanford, D. A bound on chaos.
J. High Energy Phys. 2016, 106 (2016).
[40] Sachdev, S. & Ye, J. Gapless spin-fluid ground state in a random quantum Heisenberg magnet. Phys. Rev. Lett. 70, 3339–3342 (1993).
[41] Kitaev, A. A simple model of quantum holography. KITP (2015).
[42] Maldacena, J. & Stanford, D. Remarks on the Sachdev-Ye-Kitaev model.
Phys. Rev. D 94, 106002 (2016).
[43] Almheiri, A., Marolf, D., Polchinski, J. & Sully, J. Black holes: complementarity or firewalls? J. High Energy Phys. 2013, 62 (2013).
[44] Stanford, D. & Susskind, L. Complexity and shock wave geometries.
Phys. Rev. D 90, 126007 (2014).
[45] Brown, A. R., Roberts, D. A., Susskind, L., Swingle, B. & Zhao, Y. Holographic complexity equals bulk action? Phys. Rev. Lett. 116, 191301 (2016).
[46] Susskind, L. Dear Qubitzers, GR= QM. Preprint at (2017).
文章头图及封面图片版权所属:NASA/Sonoma State University/Aurore Simonnet.